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Thermal Properties of Polymers 
at Low Temperatures 

W. REESE 
Department of Physics 
Naval Postgraduate Sch ool 
Monterey, California 

SUMMARY 

The existing measurements and theories of the low-temperature thermal 
properties, heat capacity, and thermal conductivity of polymers are reviewed 
with particular attention paid to the differences between partly crystalline 
and amorphous polymers. The most striking feature of the low-temperature 
heat capacity of polymers is that in the liquid helium temperature range the 
heat capacity does not depend upon the cube of the temperature as for 
other solids. Further, only well below 1°K does the heat capacity approach 
the value predicted on the basis of the sound velocity. This behavior indi- 
cates the presence of a small number of low-frequency modes of vibration 
in the frequency spectrum. The fact that such anomalous behavior seems 
linearly related to the crystallinity implies that this behavior is associated 
with the amorphous structure, perhaps with motions of pendent groups 
within cavities formed in the amorphous structure. The thermal conduc- 
tivity of semicrystalline and amorphous polymers differs considerably. 
Semicrystalline polymers display a temperature dependence of the thermal 
conductivity similar to that obtained from highly imperfect crystals, the 
thermal conductivity having a maximiim in the temperature range near 
100°K which moves to lower temperatures and hgher thermal conductivi- 
ties as the crystallinity is increased. Amorphous polymers display a tem- 
perature dependence similar to that obtained for glasses with no maximum 
but a significant plateau region in the range between 5 and 15°K. The 
theoretical interpretation of the thermal conductivity of these materials 
is considered. 
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INTRODUCTION 

W. REESE 

In this paper the low-temperature thermal conductivity and heat capac- 
ity of polymers are discussed. Such a discussion may be appropriate at 
this symposium, first, because the technical utilization of polymers in cryo- 
genic environments often requires some knowledge of these thermal p r o p  
erties (for example, the very low thermal conductivity of polymers may 
either be a very useful feature or a great nuisance in various applications); 
and secondly, because of the insights into the nature of the solid-state 
behavior of polymers that the studies of these properties can give. In our 
discussion, which examines the experimental and theoretical aspects of the 
two problems in turn, we concentrate on the heat capacity below about 
20°K, as considerable attention has been paid elsewhere to the heat capac- 
ity at higher temperature ; but our concern with the thermal conductivity 
will extend to much higher temperatures, as the temperature dependence 
of this property of polymers has received little attention in the past and 
we find general patterns emerging only when we examine the thermal 
conductivity over a wide range of temperatures. Our general plan of 
attack is to survey briefly the available experimental information, then 
to present some rather general theoretical orientation suitable for considera- 
tion of the available data, and finally to examine in some detail the special 
cases of polyethylene and polymethyl methacrylate as examples of semi- 
crystalline and amorphous polymers. In our survey we find that the be- 
havior of semicrystalline differs considerably from that of amorphous 
polymers. 

In contrast to the situation which prevails for many other types of 
materials, very few low-temperature data exist for the heat capacity and 
thermal conductivity of polymers. In fact, the heat capacity of only the 
single polymer, polyethylene, is known over a full range of temperatures, 
while the thermal conductivity of no polymer is known over a full range 
of temperatures. Thus we devote much attention to developing rather 
simple models which may be used to try to bridge the gaps in the experi- 
mental data. 

In our discussion of heat capacity we pay particular attention to the 
existence of the so-called excess, or low-temperature nonacoustic, heat 
capacity in amorphous polymers, as the existence of this heat capacity 
contribution must be recognized if simple models are to be used to 
extrapolate heat capacity measurements to lower temperatures or if reli- 
able deductions concerning molecular motion are to be made from low- 
temperature heat capacity studies. 
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THERMAL PROPER TIES OF POL YMERS 1259 

In our discussion of thermal conductivity we pay particular attention to 
amorphous materials because for these materials the greatest degree of un- 
derstanding has been achieved. The case of semicrystalline polymers is 
much more difficult and it is not yet clear that a generally applicable 
methodology for the interpretation of the thermal conductivity of such 
materials is currently available, although it is suggested that the best method 
of approach may be by analogy with the case of crystals with a high defect 
concentration. Because of this lack of understanding, the chief physical 
factors, other than crystallinity, which effect the thermal conductivity of 
semicrystalline polymers have not yet been identified with certainty. 

THE LOW-TEMPERATURE HEAT CAPACITY OF POLYMERS 

The Experimental Situation 

In contrast to the wealth of available experimental data on the low- 
temperature heat capacity of typical inorganic substances, there is a relative 
scarcity of data on polymeric substances. There is a considerable body of 
data concerning the heat capacity of a large number of polymers from ap- 
proximately the liquid hydrogen temperature range, about 20"K, to quite 
elevated temperatures [l-71, and these data have been subjcctcd to a great 
deal of analysis to extract thermochemical parameters of interest and often 
in an effort to extract information concerning the motion of various side 
groups along the polymer chain [3, 81. It is not our purpose here to re- 
view these data nor the interpretations that have been made of them, but 
rather to point out some difficulties that may result because of the lack 
of truly low-temperature data. 

From an experimental point of view it is quite understandable that most 
of the data available lie above 20°K. One of the principal problems in 
measuring the heat capacity of polymers stems from their very low thermal 
conductivities, leading to excessive thermal equilibrium times unless special 
techniques are adopted. The typical experimental approach to this problem 
is to use a large number of small pieces of polymer (typical size, a few mm3) 
and to effect thermal contact with an exchange gas (typically helium). 
While this procedure is not objectionable in the temperature range in which 
it has been used, it is l f f c u l t  to extend the technique to much lower tem- 
peratures without encountering the difficulty of a temperature-dependent 
absorption of exchange gas on the sample surface leading to misleading data 
since the heat added to effect a measurement would be divided in an 
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1260 W. REESE 

unknown way between the heat used to actually change the temperature of 
the material and the heat of desorption of the exchange gas. 

The goal of heat capacity measurements is often to obtain thermochemi- 
cal data. To obtain adequate thennochemical data for many inorganic sys- 
tems, heat capacity measurements above the hydrogen range quite often 
suffice, as there are good extrapolation methods for a typical crystalline 
solid, usually the Debye model, which may be used to extend heat capacity 
and entropy data toward the absolute zero. However, such extrapolations, 
although sometimes employed for polymers, are quite unreliable because the 
Debye approximation is not a good approximation to the heat capacity of 
polymers in the temperature range near 20°K. As an example we might 
cite the case of Teflon in which measurements were carried to 15°K and fit 
to a Debye function [2]. If one compares the measured heat capacity in 
the liquid helium temperature range [9, 101 with the Debye function ex- 
trapolation from 15"K, one finds that the extrapolation is in error by ap- 
proximately a factor of 2. It is true that such discrepancies really do not 
contribute too much error to entropy calculations and resultant thermo- 
chemical considerations, since the heat capacity at low temperatures is 
small and even a large error in extrapolation will lead to a small relative 
error in the entropy. However, such errors indicate that the low-frequency 
portion of the vibration spectrum is not well understood and should be 
troubling to anyone wishing to extract information concerning molecular 
motion from heat capacity data. 

The available low-temperature (below 15°K) data on the heat capacity 
of polymers are summarized in Table 1. As can be seen, for only two 
polymers, the linear polymer polyethylene [4, 6, 10-121 and the cross- 
linked epoxy Araldite [13, 141, data are available over a complete range 
of temperatures to 20"K, and data are available over a truly wide tempera- 
ture range only for polyethylene. However, a comparison of the existing 
helium temperature and hydrogen temperature data will probably allow a 
reasonable extrapolation to be made in the other cases (see, for example, 
Fig. 6). The low-temperature data fall into two classes, those obtained by 
direct calorimetric means and those obtained indirectly as a by-product of 
thermal conductivity measurements. 

As mentioned, the low thermal conductivity of polymers presents ex- 
perimental difficulties for direct heat capacity measurements of large 
samples. In the case of polyethylene, this problem has been overcome 
either by the use of a sample consisting of a number of flat disks sand- 
wiched between a number of flat, connected copper plates [ 111, or by 
embedding a large number of fine copper wires inside the sample [ 121 . 
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THERMAL PROPERTIES OF POL YMERS 1261 

Table 1. Summary of Available Heat Capacity Data on Polymers Below the 
Liquid Hydrogen Temperature Range 

Temperature range, 
Material "K Methoda Ref.b 

Polyethylene 

Teflon 

Nylon 

Kel-F 
Polystyrene 

17-60 D 141 
20-300 D (61 

1-4.5 I [101 
1.8-5.3 D 1111 
2.5-30 D [121 
15-370 D [21 

1-4.5 I 1101 
1-4.5 I [101 

1-4.5 I [101 

1.4-4.2 D 191 

1-4 D ~ 4 1  

16-60 D [51 
20-300 D [71 
1.4-4.2 D [91 
0.5-2 D [15,161 

1-4.5 I 1171 
1-4.2 I 161 

Polymethyl methacrylate 17-60 D PI 
1.4-4.2 D 191 

1-4.5 I 1171 

Araldite 1-2 D ~ 3 1  
1.5-20 D ~ 4 1  

0.5-2 D [161 
1-4.2 I [161 

aD = direct, I = indirect. 
bReferences are to some measurements at higher temperatures where there 

is comparable low-temperature data available. 
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1262 W. REESE 

A similar procedure was used for the recent measurements on Araldite [13] ; 
the earlier measurements employed the exchange gas technique [ 141 and, 
at least at the low-temperature end, should consequently be viewed with a 
bit of skepticism. At sufficiently low temperatures, below about 2°K for 
most polymers, the time required for thermal equilibration becomes quite 
reasonable, of the order of a few minutes for a sample of about 10-cm 
length, so that no special techniques are required to promote thermal 
transfer. Recent measurements below 2°K on polystyrene [15, 161 and 
polymethylmethacrylate [16] are of this type. In addition, the direct 
measurements on nylon [13] were made without special techniques to 
ensure rapid thermal equilibrium. There is no information available con- 
cerning the techniques employed by Noer et al. [9], although the exchange 
gas technique was probably used in this work. 

The second class of measurements are those which were obtained through 
an analysis of the thermal equilibration in measurements of thermal conduc- 
tivity. In such experiments heat is typically introduced from one end of a 
rod whose other end is held at a fixed temperature, and the approach to 
thermal equilibrium is essentially exponential with the time constant pro- 
portional to the heat capacity per unit volume. Such measurements are 
inherently of low accuracy (typically f 10%) and below about 1 .S°K suffer 
because of contribution to the time constant by thermal boundary resist- 
ance, an effect which may increase the measured value of the heat capacity 
considerably above the actual value. It is undoubtedly because of this 
problem that the decrease in C/T3, which takes place in polystyrene and 
polymethyl methacrylate below about 1 S " K ,  was not detected in work 
using this technique. 

Theoretical Framework 

In principle, the understanding of the heat capacity of solid polymers is 
a straightforward application of the ideas used to understand the heat ca- 
pacity of any solid body. Once the spectrum of vibrational states, g(w)dw, 
is known, giving the number of modes of vibration whose frequencies lie 
between w and w + d o ,  the heat capacity follows at once as 

The key assumption in the preceding is that g(w) is known. In favorable 
cases g(w) may be calculated more or less accurately using the techniques 
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THERMAL PROPERTIES OF POL YMERS 1263 

of lattice dynamics, in which case comparison with experiment is often 
made by the calculation of the heat capacity through Eq. (1). However, 
the more usual problem is that from the outset g(w) is not known and one 
wishes to deduce from the heat capacity as much as one can concerning the 
vibrational spectrum. Since the heat capacity represents an average over 
many modes of vibration, very little of the detail of g(w) can be deduced 
from the heat capacity [18] ; only the general features and the limiting 
behavior at low frequencies can be deduced with any certainty. In this 
discussion we wish to concentrate on the most general features of the heat 
capacity and so we deal almost entirely with very simple approximations to 
g(w) and ignore, for the most part, the insights of those lattice dynamical 
calculations which have been performed and which are applicable to the 
problems of polymers. 

Before continuing, perhaps it is best to bring up again a point which has 
been made before [ 191 . Since the ideas of a vibrational spectrum and the 
models which are employed in this paper are most often encountered in the 
context of crystalline solids, their application to  polymers, which lack a 
crystalline structure, may seem novel. However, although a noncrystalline 
solid does not possess the translational symmetry which characterizes a 
crystal and greatly simplifies the calculation of its spectrum of vibrations, 
it does possess a spectrum of normal modes consisting of the coupled 
oscillations of the primary vibrating units about their local equilibrium 
positions. Further, in the long-wavelength limit, the details of the atomic 
structure become unimportant and the modes must be those of an elastic 
continuum, the basis of the models to be introduced later in this paper. 

is determined by an average over many modes, the elucidation of g(w) is 
often quite difficult in the case of a polymer because of the complicated 
nature of the repeating unit, which gives rise to the possibility of many 
differing modes of vibration often characterized by rather low frequencies. 
These modes, then, contribute significantly to the low-temperature heat 
capacity of polymers to an extent not often found in other solids. 

In our discussion we wish to distinguish between those modes which 
arise out of a coupling of the translational degrees of freedom of the 
repeating unit (the acoustic modes), and those modes which stem from 
the coupling of internal motions of the repeating unit (the optical modes). 
Since the acoustic modes are characterized by a zero frequency at zero 
wave number, while the optical modes have a finite frequency at zero 
wave number, the acoustic modes will eventually dominate the heat 
capacity, although, as suggested by the discussion in the preceding 

Aside from the general limitations caused by the fact that heat capacity D
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1264 W. REESE 

paragraph, this doinination will often not come until very low temperatures 
are reached. In this discussion we fix our attention on the contribution of 
the acoustic modes for several reasons: 1 )  Their presence is a universal fea- 
ture of the vibration spectrum of all polymers, while the presence and na- 
ture of the optical modes depend on the exact nature of the repeating unit, 
2) they eventually dominate the low-temperature heat capacity, and 3 )  
because of the low group velocity usually associated with optical modes, 
the acoustic modes will dominate the problem of thermal transport in 
polymers, the subject of the latter part of this paper. 

The simplest treatment of the acoustic modes of any solid body is that 
due to Debye [20] in which one ignores dispersion and relates frequency 
and wave number by w = sq, where s is the sound velocity and q the wave 
number, for all frequencies. The distribution of vibrational states is then 
given by 

for each mode (one longitudinal and two transverse) where the cutoff fre- 
quency is introduced to limit the total number of degrees of freedom tc 
the total number of particles in the system (N). The Debye model allows 
us to understand many of the general features of the heat capacity of 
ordinary solids, particularly the fact that the heat capacity depends on the 
cube of the temperature at low temperatures. 

even as the first approximation, since it ignores a key feature of the poly- 
mer chain, its one-dimensional nature. For long-wavelength excitations 
many polymer chains will interact with one another through the weak 
interchain forces and the vibrations will be essentially three-dimensional, 
so that the Debye model will be satisfactory. Howcver, for shorter wave- 
lengths and higher frequencies there will be many normal modes excited 
which are essentially vibrations along the chain skeleton and will therefore 
be essentially one-dimensional in nature. A simple continuum model which 
allows us to encompass both the three-dimensional and one-dimensional 
natures of polymers is due to Tarasov [21]. In this model we assume that 
all of the low-frequency modes are three-dimensional and calculate the fre- 
quency spectrum as in the Debye model up to some cutoff frequency, w 3 .  
Higher frequency vibrations are treated as a one-dimensional continuum up 
to some final cutoff frequency, wl, which is determined by the requirement 
that the total number of frequencies be equal to the number of repeating 
units (N). The resulting distribution is then 

The Debye model is not completely suitable for application to polymers, 
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3Nw 
w1 w3 

g(w) = ---2 w < w3 

1265 

( 3 )  

In t h s  division it is assumed that the fractionu3/wl of the total number 
of vibrational states is three-dimensional in nature and the remainder are 
one-dimensional. The Tarasov approximation for g(o) is shown in Fig. I a. 

When the Tarasov model is used with Eq. (1) to calculate the heat 
capacity, we find for each mode and for 1 mole of repeaticg units 

where Dn is the n-dimensional Debye function [22]  and the 0’s are equiva- 
lent temperatures defined by Oj = hwi/k. To find the total heat capacity 
we must add the results of two transverse and one longitudinal mode, and 
we do not expect, in general, that the 8’s will be the same for longitudinal 
and transverse modes. Thls corresponds to the Born, rather than the 
Debye, cutoff procedure. At low temperatures the three-dimensional modes 
dominate the calculation, and we find for each mode 

At an intermediate temperature, 1 5 e3 < e l ,  all of the three-dimensional 
vibrations are excited and the one-dimensional modes dominate the tempera- 
ture dependence of the heat capacity, and we find for each mode 

n2 T C/R = - - 
3 61 

Thus the Tarasov model predicts the expected cubic dependence of the heat 
capacity on temperature at low temperatures and a linear dependence at  
intermehate temperatures. In the cubic temperature dependence region the 
model is the same as the Debye model so that the heat capacity per unit 
volume can be related to the sound velocity [23] through 
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1266 W. REESE 

I 

Fig. la. The solid line shows the Tarasov approximation to the vibration 
spectrum for a single acoustic mode. The dashed line shows schematically 
the results of lattice dynamical calculations for polyethylene and follows the 

results of Ref. [24]. 

DEBYE 

D 

TARASOV 

T 

Fig. 1 b. We show schematically the low-temperature behavior of C/T3 in 
the Debye approximation and a simple solid with dispersion (the upper 
curve labeled D) to  compare it with the behavior obtained from the Tarasov 
model and a schematic representation of the result of introducing dispersion 

into the Tarasov model (lower curve labeled D). 
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where the subscripts stand for longitudinal and transverse and c is the heat 
capacity per unit volume. Comparing this with the Tarasov result shows us 
that 

where N/V is the number of repeating units per unit volume. 
Any continuum model, whether Debye or Tarasov, cannot be expected 

to give a completely accurate picture of the heat capacity of any solid be- 
cause of the presence of dispersion, so the more detailed and realistic cal- 
culations which make use of the actual structure of the solid and the inter- 
atomic forces are needed if a complete picture is to be obtained. For 
polymers, the most complete calculations have been carried out for the 
case of polyethylene [24, 251 and support, in a very loose sense, the form 
of g(o) obtained from the Tarasov model. It is not the purpose of this 
paper to explore the lattice dynamics calculations, but we should like to 
make one point concerning the effects of dispersion on the heat capacity 
of polymers. For ordinary solids the Debye model would predict that 
C/T3 would become a constant below about eD/12, although because of 
the presence of dispersion tlus often does not occur until tJD/3O or at even 
lower temperatures. The effect of dispersion is to increase the number of 
lowfrequency vibrations over that predicted on the basis of the continuum 
model and so cause C/T3 to increase with increasing temperature, as shown 
in Fig. lb.  In the Tarasov model the presence of the one-dimensional vibra- 
tions with their rather low density per unit frequency interval causes C/T3 
to decrease with increasing temperature. The presence of dispersion in the 
three-dimensional modes causes a competing increase in C/T3 and as a result 
one may find that C/T3 remains nearly constant to a remarkably high value 
of T. 

Heat Capacity of Polyethylene 

Polyethylene is in many ways an ideal subject with which to study the 
heat capacity of polymers, as the simple repeating unit does not possess 
any of the low-lying optical modes which plague the interpretation of the 
heat capacity of most polymers. The interpretation of the heat capacity 
in terms of the various vibrational modes has been thoroughly examined on 
the basis of data existing prior to 1962 [26]. However, the data existing 
at that time were not such as to permit an examination of the crystallinity 
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T (*lo 

Fig. 2. The heat capacity of crystalline (X) and amorphous (A) polyethylene 
below 200°K. The dashed line is of the form AT and shows the linear tem- 
perature dependence of the heat capacity between 50 and 100°K. The 
curves result from a linear extrapolation of the heat capacity versus crystal- 

linity curves at each temperature to 0 and 100% crystallinity. 

dependence of the heat capacity below 90°K, so the conclusions reached 
concerning the low-frequency portion of the vibration spectrum, while 
correct in form, need some reexamination. 

Figure 2 shows the low-temperature heat capacity of amorphous and 
crystalline polyethylene. These data have been extrapolated from a series 
of measurements of heat capacity on samples of varying density in which 
it was found, both at high[271 and low [ 121 temperatures, that the heat 
capacity is a linear function of crystallinity. A clear feature of the data is 
that amorphous and crystalline polyethylene display a significant region 
(approximately 50-100°K) in which the heat capacity depends linearly on 
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temperature (shown by the dashed line in Fig. 2) as predicted by the 
Tarasov model [Eq. (6)]. Further, we see that the same slope, and hence 
0 in terms of the continuum model, characterizes polyethylene independ- 
ent of the density. This latter fact is as expected since the one-dimensional 
vibrations should, to a first approximation, be independent of the inter- 
chain forces and depend only on the intrachain forces and thus be inde- 
pendent of the density. 

differs from that of crystalline polyethylene both above 110°K and below 
50°K. At the high-temperature end, this difference is connected with the 
glass transition [27] ; it is not discussed here as this is a "high-temperature" 
effect. Below 50°K the difference stems from two sources: (1) The 
acoustic contribution to the heat capacity is dominated by the three- 
dimensional vibrations which are quite sensitive to the interchain forces 
and hence the density, and (2) the existence of nonacoustic vibrations of 
low frequency associated with the disordered amorphous structure. 

basis of a plot of C/T3 versus T, as shown in Fig. 3. We see that such a 
plot is almost a flat line for crystalline polyethylene below lOoK but dis- 
plays a distinct L'hump'' at about 5°K for amorphous polyethylene. The 
limiting value of C/T3 for crystalline polyethylene shows good agreement 
with the value predicted by measurements of the sound velocity through 
Eq. (7), but there are no  sound-velocity measurements with which the 
amorphous heat capacity data can be compared. 

that the parameters 

From Fig. 2 it is seen that the heat capacity of amorphous polyethylene 

The low-temperature behavior of the heat capacity is best studied on the 

If one attempts to fit the heat capacity to the Tarasov model one finds 

fit the heat capacity to better than 10% up to 100°K. If, as discussed 
below in connection with the heat capacity of amorphous polymers, one 
attributes the "hump" in the C/T3 plot to the presence of a small number 
of nonacoustic vibrations characterized by a very low frequency (this is 
discussed in the next section), thz Tarasov model will give an equally good 
fit to amorphous polyethylene using the parameters 

= 1655"K, B I T  = 707%, 8,L = 123"K, 6,T = 74°K 
O I L  

In keeping with the spirit of the continuum model, we allow only the 
three-dimensional contributions to be affected by the density. 
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.3  

. 2  

4 8 12 

T ('lo 

Fig. 3. The low-temperature behavior of the heat capacity of polyethylene 
is shown in a plot of C/T3 versus T. The labels X and A refer to extrapo- 
lations to 100 and 0% crystallinity, respectively. The data are taken from 
Ref. [ 121 . The dashed lines show the Tarasov fits to the data using the 

parameters given in the text. 

A much better fit to the heat capacity of crystalline polyethylene can be 
obtained on the basis of lattice dynamical calculations than with the con- 
tinuum model. Recently Kitagawa and Miyazawa [ 2 5 ]  presented calcula- 
tions based on a lattice dynamical model which give the results shown in 
Fig. 4, and they show what must be considered excellent agreement with 
the experimental data. Thus we can say that in the case of crystalline 
polyethylene, our understanding of the heat capacity is excellent, while in 
the case of amorphous polyethylene our understanding is still incomplete. 
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0 
10 2 0  30 4 0  5 0  

T ( * K  1 

Fig. 4. A comparison of the results of the lattice dynamics calculation of 
Kitagawa and Miyazawa [25] with the heat capacity of crystalline poly- 
ethylene. The solid line is the calculated behavior while the solid points 

give some of the experimental results. 

Heat Capacity of Amorphous Polymers 

It is unlikely that a comparison with a microscopic calculation of the 
heat capacity, such as is possible in the case of polyethylene, will soon be 
possible for any amorphous material. Thus in the following we concentrate 
on only the most general features of the low-temperature heat capactiy. A 
prominent feature in the plot of C/T3 versus T for amorphous polyethylene 
(Fig. 3 )  is the distinct hump centered at about 5°K. Similar features have 
been found in the heat capacity of other amorphous materials, vitreous 
silica [28, 291 , vitreous germania [ 3 0 ] ,  and glycerol glass [31], and they 
have been attributed to a small number of low-frequency optical modes 
associated in some manner with the amorphous structure. In an analogous 
manner i t  was found that the heat capacity of amorphous polyethylene 
could be accounted for by the combination of a Tarasov spectrum (dashed 
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1 1 I I I 
1 2 3 4 

r ( O K )  

Fig. 5. A representation of the low-temperature heat capacity of polysty- 
rene (PSTY and r) and polymethyl methacrylate (PMMA and 0 ) .  The data 
are taken from Ref. [16] and the dashed lines represent the contribution of 

acoustic modes calculated from the sound velocity using Eq. (7). 

line in Fig. 3) and a small number (0.17% of the repeating units) of vibra- 
tions having a characteristic temperature of 23°K [12, 321. 

became available, low-temperature sound-velocity measurements on poly- 
methyl methacrylate (PMMA) and polystyrene were made and the results 
were compared with the heat capacity using Eq. (7) (331. The result of 
this comparison was that the measured heat capacity was found to be con- 
siderably larger in the liquid-helium temperature range than could be ac- 
counted for by the acoustic vibrations, implying the existence of low- 
temperature nonacoustic contributions to the heat capacity (this contribu- 
tion is sometimes referred to as excess heat capacity). Recently, this 

At about the same time as the polyethylene heat capacity measurements 
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suggestion has been tested by heat capacity measurements of these materials 
below l°K, the results of which are shown in Fig. 5 [15, 161. These 
measurements display a clear decrease in C/T3 taking place below about 
1.5"K and are consistent with the limiting value predicted from the sound- 
velocity measurements through Eq. (7). Thus, for these two polymers, and 
probably also in the case of amorphous polyethylene, there is considerable 
evidence for the existence of nonacoustic contributions to the heat capacity 
in the liquid-helium temperature range. 

The physical interpretation of the nonacoustic contributions to the low- 
temperature heat capacity are not at all clear and can probably never bc 
clarified solely through calorimetric data. From a purely descriptive point 
of view it is possible to account for the heat capacity excess by postulat- 
ing a small number of vibrations having one or more discrete, low fre- 
quencies. The parameters deduced for a number of amorphous materials 
are presented in Table 2 .  From this tabulation we see that the number of 
vibrations is rather small, of the order of 1% of the total number of vibrat- 
ing units, and the characteristic frequency is rather low, of the order of 
10 cm-' . In the case of vitreous silica there is evidence that these modes 
are Ranian active [29], leading to their characterization as optical modes. 

One possible interpretation of such lowfrequency modes has been 
offered by postulating that there are cavities in the amorphous structure 
with one or more vibrating units loosely bound inside the cavity 1341. 
In the case of polymers the most likely such unit is a pendent group 
(perhaps one of the methyl groups in the case of PMMA) or a short 
branch. Certainly the nearness of the characteristic temperatures for the 
case of polyethylene and PMMA can be taken to support the contention 
that the vibrating unit in this case is a methyl group (pendent methyl 
groups are a possible branch in amorphous polyethylene, and, in one of 
the heat capacity samples from which the data shown in Fig. 3 were de- 
duced, methyl groups were deliberately added to the polyethylene chain 
to impede crystallization). This argument is made even stronger if the 
reanalysis of the Tucker and Reese [I21 data made by Morrison and 
Newsham [32] is used, as they conclude that a characteristic temperature 
of 17"K, approximately the same as in PMMA, is the best single frequcncy 
needed to fit the heat capacity excess. In the case of polystyrene it may 
be that the pendent group involved could be the phenyl ring, but because 
of its size it may be unlikely that a sufficiently large cavity could occur. 
Further, the comparison of the dominant characteristic frequencies involved 
with the cases of PMMA and polyethylene shows that it is likely that the 
vibrating unit in the case of polystyrene has a mass not much more than 
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Table 2. Parameters Characterizing the Low-Temperature 
Nonacoustic Contribution to the Heat Capacity of Some 

Amorphous Materials 

Material Noma 

Amorphous polyethylene 0.001 7 
Polymethyl methacrylate 0.0106 

0.0005 
Polystyrene 0.0078 

0.00006 
Vitreous silica 0.014 

0.002 
0.00008 

Vitreous germania 0.004 

6b, "K 

23 
17 
7.5 

13 
5 

58 
32 
13 
38 

aRatio of number of low-frequency optical modes to the 
total number of primary vibrating units (repeating in the 
case of polymers). 

of these modes needed to account for the heat capacity. 
Where more than one characteristic temperature is given, 
more than one discrete frequency is required to satisfactor- 
ily fit the heat capacity. 

bEquivalent temperature of the frequency of oscillation 

twice that in the case of the other two polymers. Thus, chain ends or 
branches may be needed to account for the vibrating unit in this case. 

It is perhaps attractive to postulate that these low-temperature heat 
capacity anomalies are associated with the low-temperature mechanical 
relaxation peaks found in PMMA and polystyrene, and they are tentatively 
identified with motions of methyl and phenyl groups, respectively [35-381. 
However, both the association and the identification must at present be 
considered conjectural. 

As evidence in support of the pendent group in a cavity model we might 
cite the observation that the cross-linking of polystyrene by electron irradi- 
ation caused about a 25% reduction of the heat capacity in the helium tem- 
perature range [39], a reduction which can be accepted as the reduction of 
the number of loosely bound units participating in these nonacoustic, low- 
frequency vibrations. The particle in a cavity model is not, however, the 
only model which can explain the observations, as the analysis of the heat 
capacity which leads to the assignments in Table 2 is in no way a uniquely 
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Fig. 6. The heat capacity of polymethyl methacrylate. The low-temperature 
data (solid lines) are taken from Refs. [ 161 and [ 171 , while the higher- 
temperature data are taken from Refs. [5] and [41]. The dotted line shows 
an interpolation while the dashed line shows the acoustic contribution to the 
heat capacity as calculated from the Tarasov model using the parameters 

given in the text. 
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determined analysis. In the case of vitreous silica, at least, there is as much 
evidence that the low-temperature heat capacity excess may be associated 
with vibrations about distorted bonds as with “particle in a cavity” 
vibrations. 

Let us now turn from an examination of the low-temperature excess 
heat capacity to the total heat capacity o f  PMMA. The heat capacity has 
been presented in Fig. 6 ,  with the dotted line showing the interpolation 
between the existing data in the helium temperature region [ 16, 171 and 
the lowest temperature data of Sochava [5]. An exact analysis of the 
heat capacity is made quite difficult both because of the low-temperature 
excess and because of a number of other low-frequency modes associated 
with the complicated repeating unit. A particular trouble spot in the 
analysis of the low-temperature heat capacity is the mode giving rise to 
the Raman line at 84 cm-’ , which is thought to be associated with rota- 
tions of the pendent methyl group [40]. However, there are many other 
low-frequency optical modes which contribute significantly to the heat 
capacity by 100°K [41]. One can attempt to divide the heat capacity 
into contributions due to the acoustic modes and optical modes associated 
with the measured Raman lines, although such a procedure is full of pit- 
falls since neither the distribution in frequencies of the various optical 
modes nor the correct parameters for describing the transition from 
hindered to free rotation is in any way certain, nor is the contribution 
of the acoustic modes determined in any firm manner. In our analysis 
of the thermal conductivity o f  PMMA we need some estimate of the con- 
tribution to the heat capacity due to acoustic modes. Rather than attempt 
the division mentioned above, a simple and grossly approximate alternative 
has been adopted. We have assumed that the acoustic contribution can be 
accounted for by the Tarasov model. Since the limiting frequency w1 is 
related to the limiting frequency for vibrations of the repeating unit with 
spring constants characteristic of the C-C bond, we have scaled the one- 
dimensional Tarasov temperatures obtained for amorphous polyethylene 
according to 

where m is the mass of the repeating unit. The sound-velocity measure- 
ments were then used to determine O3 through Eq. (8). The resulting 
Tarasov parameters were 
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THERMAL PROPERTIES OF POL YMERS 1277 

and the resulting acoustic contribution is shown as the dashed line in 
Fig. 6. 

THE LOW-TEMPERATURE THERMAL CONDUCTIVITY OF POLYMERS 

The Experimental Situation 

Most discussions of the thermal conductivity of polymers have concen- 
trated on an understanding of the behavior in the vicinity of room tempera- 
tures [42-451; however, as is the case with crystals, confirmation of the 
ideas developed and further insight into the process which controls heat 
conduction come by an extension of the analysis to lower temperatures. 
However, this extension is hampered by a lack of data which cover a 
complete range of temperature, as such measurements do not exist for any 
polymer at the present time. The data presently available do allow us to 
make a reasonable interpolation between existing data sets in favorable 
cases and also allow us to  draw some broad general conclusions concerning 
the factors which are important in determining the thermal conductivity of 
polymers. 

The available data fall into two rather natural classes: that taken at low 
temperatures, below about 25°K [46-491 and mostly below 4°K [lo, 15- 
17, 40, 511, which were obtained on long, rod-shaped samples, and the data 
in the range above liquid nitrogen temperatures, about 80°K to room tem- 
perature and above 152, 541, which were taken with flat, plate-like samples. 
The change in technique between the two temperature ranges is primarily 
necessary to guard against radiative heat loss at the higher temperatures, 
a need which does not exist in any serious sense in the lower-temperature 
range. There do  not exist at present any measurements which bridge these 
two temperature ranges. A summary of the available data on the low- 
temperature thermal conductivity of polymers is given in Table 3. 

the thermal conductivity of polymers. There are two basically different 
types of behavior illustrated. Semicrystalline polymers, illustrated by 
polyethylene, show a marked density dependence of the thermal conduc- 
tivity and display a weak increase in the thermal conductivity with decreas- 
ing temperatures to about 100"K, after which point the thermal conduc- 
tivity decreases. The maximum moves to lower temperatures and higher thermal 

Figure 7 shows the general features of the temperature dependence of 
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Table 3. Summary of Measurements of the Low-Temperature 
Thermal Conductivity of Polymers. 

Temperature 
Material range, "K Ref. 

Pol ye thylene 80-350 [52,53,54] 
1-4.5 1101 
1-35 WI 

0.4-4 [511 

Polyte trafluoroethylene 5-20,80 1481 
0.1-1 1501 

1-4.5 [lo1 
80-3 5 0 [52,531 

Poly chlorotrifluoroethylene 80-350 [52,531 
0.2- 1 POI 

1-4.5 [I01 
Nylon 2-20 P71 

1-4.5 [lo1 
1-20 [@I 

0.2-0.7 [501 

Polyethylene terephthalate 80-325 [52,531 

Polycarbona te 80-425 [541 

Poly oxymethylene 80-370 [541 

Polymethyl methacrylate 2-23 ~461 
80-325 153,541 

1-4.5 t171 
0.4-4 1161 

Polystyrene 1-4.5 ~ 1 7 1  
0.44 [I61 

Polyvinyl acetate 0.4-4 [I61 
80-370 [52,531 
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Fig. 7. The thermal conductivity of various polymers. Curve A shows the 
thermal conductivity of PMMA; curves B, C, and D show the thermal con- 
ductivity of polyethylene of densities approximately 0.98, 0.96, and 0.92 
g/cm3, respectively. The dashed lines show interpolations and the solid 

lines show where data are available. 

conductivities as the density is increased. Amorphous polymers, as illustrated 
by PMMA, show a considerably different temperature dependence; the 
thermal conductivity continually decreases with decreasing temperature. 
The temperature dependence between room temperature and liquid nitro- 
gen temperatures is rather slow, but it is hypothesized that the temperature 
dependence becomes stronger in the vicinity of 50°K. There is a significant 
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region, from about 4 to 15"K, in which the thermal conductivlty is essen- 
tially temperature independent. Below this temperature-independent region, 
the thermal conductivity again decreases with decreasing temperature. In 
contrast to the case of semicrystalline polymers in whch  large changes in 
the thermal conductivity, primarily associated with density changes, occur 
from sample to sample, the thermal conductivity of a given amorphous 
polymer seems to vary little from sample to sample. There is a very weak 
dependence of the thermal conductivity on molecular weight, which has 
been observed at room temperature [43, 55, 561 and possibly also at 
lower temperatures [16]. In addition, the thermal conductivity can be 
affected through orientation of the polymer chains through frozen-in 
strain [52, 57, 581 or by extrusion [ 5 9 ] .  In either case such orientation 
increases the thermal conductivity in the direction of the chain orientation. 
Such orientation effects are either absent or greatly reduced in the helium 
temperature range, as evidenced by the fact that measurements on strained 
[17] and extruded [46] samples of PMMA display nearly the same thcrmal 
conductivity in the helium temperature range as do cast samples. 

Theoretical Framework 

Theories of the thermal conductivity of polymers are of two sorts, those 
modeled on liquid-state theory [42, 431, which consider energy transfer 
between repeating units through the chemical bonds, either primary or 
secondary, as individual uncorrelated events, and those modeled on solid- 
state theory, whch  discuss the collective motion of the repeating units and 
introduce scattering phenomena which limit the range of the energy trans- 
port [60] .  At low temperatures, where the excitations are vibrations with 
wavelengths much longer than the distance between the repeating units, a 
suitable theory must be of the second type. However, it is found for 
amorphous polymers that at higher temperatures the mean free path be- 
comes of the order of the distance between repeating units (discussed under 
Thermal Conductivity of Amorphous Polymers), so that the results of the 
collective mode theory reduce to those of the liquid-like theories. In this 
case the former class of theory is undoubtedly the more nearly correct 
way of describing the situation, since a criterion for the validity of the 
collective picture is that the mean free path should be much longer than 
the interparticle distances so that the collective modes can be well defined. 
As we are primarily interested in low-temperature behavior, we shall con- 
centrate our attention on the second class of theories. It is probable that 
this type of theory is also the best approach in the case of semicrystalline 
polymers. 
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The collective approach is to discuss heat transport in terms of a gas of 
phonons, the thermal conductivity being given by [61] 

3c = a c s  A (9) 

where c is the (phonon) heat capacity per unit volume, s is the phonon 
group velocity, A is the mean free path, and a is the average of cos’0 (0 
is the angle between the mean free path and the transport direction) which 
is 1/3 except in the case of oriented polymers. The essence of the problem 
is to compute the mean free path. There are two primary types of events 
which determine the mean free path: interactions betwen phonons and 
interactions of phonons with defects. For most solids, and perhaps for 
semicrystalline polymers, phonon-phonon interaction dominates the be- 
havior at high temperature and leads to  a thermal conductivity proportional 
to 1/T. As only so-called umklapp processes contribute directly to the ther- 
mal resistance, a process which becomes much less probable at temperatures 
significantly below the Debye temperature; the mean free path due to 
phonon-phonon interactions increases as an exponential in l/T at low tem- 
peratures. Eventually, as the phonon-phonon mean free path lengthens, 
the presence of various defects limits the mean free path and the thermal 
conductivity begins decreasing, reflecting the fact that thc heat capacity 
decreases with temperature. Differing types of defects yield mean free 
paths with differing temperature dependences, so, at least in the ideal case, 
the type of defect which dominates the thermal resistance can be identi- 
fied. These considerations, which are those normally applied to crystalline 
solids, lead to a thermal conductivity which initially increases with decreas- 
ing temperatures, reaches a maximum at a temperature which decreases 
with decreasing number of defects, and then decreases toward zero with a 
temperature dependence which depends upon the type of defects present 
[61, 621. As these considerations have been thoroughly explored by a 
number of other workers, they are not discussed further here. 

It is possible to extend the collective model used above to the case of 
noncrystalline solids, but because such solids lack translational symmetry 
and thus do not exhibit umklapp prccesses, the arguments need to be con- 
siderably modified. The first major attempt at this extension was made by 
Klemens [61], who argued that the elastic disorder of the glassy structure 
would be the source of phonon scattering at  all temperatures and termed 
the resulting process “structure scattering.” The essential idea behind 
structure scattering is shown in Fig. 8, in which we follow the distortion 
of an initially plane wave (phonon) as it passes through regions of varying 
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0 : k  D 

E 
WAVE FRONTS 

Fig. 8. A schematic representation of the  process of structure scattering. The 
upper part of the figure shows the shape of the wavefronts at approximately 
one-wavelength intervals. The arrows show the direction of energy flow at 
each point. The lower part of the figure shows sketches of the deviation of 
the sound velocity from the average at positions A through E shown on the 
upper figure. In this case, the elastic correlation length and the wavelength 

are of the same order of magnitude. 

sound velocity. For the situation pictured, the phonon is substantially 
scattered, in the sense that the directions of energy flow are considerably 
different from the initial direction of energy flow by the time that it has 
progressed a distance of three wavelengths. In discussing structure scattering, 
the most important feature is the relation between the phonon wavelength 
and the elastic correlation length, taken to be of the order of a wavelength in 
Fig. 8. When the phonon wavelength and the elastic correlation length are of 
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the same order, the phonon is scattered quickly and the mean free path is 
of the order of the elastic correlation length. If, on the other hand, the 
wavelcngth is much longer than the elastic correlation length, the r e d  ting 
distortions between successive wavefropts are much less severe, as consider- 
able averaging over the elastic disorder takes place. Initially, Klemens used 
a heuristic argument to show that in the case of long wavelengths the mean 
free path fur a phonon with wave vector q would be given by 

where a is the distance between vibrating units and A is a constant charac- 
terizing the elastic correlation length. This result prcdicts that the limiting 
low-temperature behavior of the thermal conductivity will be proportional 
to T. 

Klemens’ initial arguments have since been considerably refined both by 
Klemens 119, 63, 641 and by Ziman [62]. In particular, using the techniques 
developed to treat the problem of radio propagation through a random 
atmosphere, Ziman shows, after correcting an error of a factor of 71 which 
appears in Klemens’ results, that at long wavelengths the mean free path 
is given by 

Z 
A =  7 

@ (z> 

where ( P z  (z) is the mean square deviation in phase compared with propa- 
gation through a uniform medium which develops in propagation through a 
distance z in the disordered medium. If one assumes that the correlations 
are Gaussian in the sense that 

6s (R i- r) &S(r) 0: exp [-R2/L2] 

where &S(r) is the deviation of the sound velocity at position r from the 
average velocity, one obtains the result 

and if one assumes that the correlations are exponential, 
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6S(R t r) SS(r) a exp [-R/L] 

one finds that 

1 So2 A - 1 So2 
2 ~ q ’  s S ’  ’ a  2~ sS’ 

I\=-- ___ 

where SO is the mean sound velocity and S S 2  is the mean square deviation 
of the sound velocity. Klemens [ 191 has pointed out that if the correlations 
have other than spherical symmetry a different wave number dependence 
than 1 /q2, and hence a different limiting temperature dependence of the 
thermal conductivity than linear in T, results. 

for short wavelengths and inversely proportional to q2 at long wavelengths. 
However, Klernens [61] found that in order to account for the plateau 
in the thermal conductivity of silica glass it was necessary to assume that 
A was much smaller for transverse waves than for longitudinal waves. 
Examining Eqs. (12) and (13) we see that a factor of about 4 in this di- 
rection is obtained from the fact that typical transverse sound velocities 
are about half the typical longitudinal sound velocities, but in order to 
explain the reduction of about 100 requaired, one must hypothesize that 
the variations in transverse sound velocity in the glassy medium are much 
greater than the variations in longitudinal sound velocity. As a result of 
this assumption, longitudinal waves completely dominate the low-tempera- 
ture thermal conductivity, but one also must account for normal processes 
in which longjtudinal waves are scattered into transverse waves which are 
quickly scattered. This conversion from longitudinal to transverse limits 
the mean free path and causes a low-temperature plateau in the thermal 
conductivity. To account for this process, Klemens wrote 

Structure scattering then results in a mean free path of the order of Aa 

x = x p  
where XL is the contribution due 

AT 

(14) 
1 
7 ’TCAT 

to longitudinal waves and is of the form 

where To is a temperature characterizing the conversion of longitudinal to 
transverse phonons, the function f is given in Klemens’ original paper, and 
the second term represents the short mean free path contribution due to 
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the transverse waves so that AT = ATa. When an attempt to make the 
same type of analysis of the thermal conductivity of amorphous polymers 
was made [ 6 0 ] ,  it  was found that a better fit could be obtained if a fur- 
ther partition of the vibration spectrum between three- and one-dimensional 
modes was made as in the Tarasov model. In this case the thermal conduc- 
tivity was written as 

where we have distinguished between the contributions to the heat capacity 
by three- and one-dimensional modes, and a is as defined in Eq. (9). 

Recently it has been suggested that the platueau in thermal conductivity 
at low temperatures, which seems characteristic of amorphous substances, 
results from resonant scattering from the modes which give rise to the 
excess heat capacity rather than from a gross difference between the scat- 
tering of longitudianl and transverse waves [65]. In this theory, modes of 
low frequency are still scattered by structure scattering so the very-low- 
temperature behavior is not changed from Klemens’ theory. Further, as 
presently constitutued, the numerical results of this theory differ little, 
except in terms of interpretation, from Klemens’ original calculations. The 
main difference is a slight change in the form of f which occurs in 
XL and a reinterpretation of STCAT as referring only to  that part of the 
heat capacity associated with modes with frequencies equal to or above 
the resonant scattering frequency. 

The Thermal Conductivity of Semicrystalline Polymers 

As an example of a semicrystalline polymer we consider polyethylene, 
which shows typical behavior, since more data are available for this 
material than for any other semicrystalline polymer. As shown in Fig. 7, 
the thermal conductivity depends markedly on density and displays, more 
or less, the features expected for the thermal conductivity of a crystalline 
solid. In fact, the curves in Fig. 7 show a striking similarity to the results 
of measurements of the thermal conduction of neutron-irradiated quartz 
[64) . At high temperatures the thermal conductivity varies approximately 
as 1/T, although the marked density dependence may indicate that the 
mean free path is not solely limited in this temperature range by an intrin- 
sic phonon-phonon scattering process. There is a maximum in the thermal 
conductivity which occurs in the vicinity of 100°K and which moves to  
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Fig. 9. The mean free path for polyethylene (density approximately 0.98 
g/cm3) shown as 33C/c = SA. 0 ,  actual data; 0, obtained by interpolation. 
The low-temperature data are by Salinger [51] and the high-temperature 

data are by Eierman [54]. 

lower temperatures and higher thermal conductivities as the density is in- 
creased. These features lead us to suspect that the proper interpretation 
of the thermal conductivity of semicrystalline polymers is to be found in 
the same techniques of analysis as are applied to crystalline solids. 

The mean free path deduced from the data by the application of 
Eq. (9) to the data for the most highly crystalline samples available 
is shown in Fig. 9. The mean free path increases slowly with decreasing 
temperature, approximately as 1/T. We do not attempt in this paper to  
make an analysis of the thermal conductivity beyond noting this fact. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THERMAL PROPER TIES OF POL YMERS I287 

Various attempts have been made to interpret thermal conductivity of 
semicrystalline polymers as a result of a combination of crystalline and 
amorphous regions. Hansen and Ho [43] attempted to fit the thermal 
conductivity to a linear function of the crystallinity, while Eierman [42] 
attempted to employ the Maxwell formula for the conductivity of a mix- 
ture, assuming a model of a number of crystallites embedded in a matrix 
of amorphous material. In each case the application was made in an 
attempt to extract the thermal conductivities of “amorphous” and “crys- 
talline” polyethylenes. We should like to point out that neither of these 
techniques is generally valid. While a linear relationship between crystal- 
linity and thermal conductivity can be established at room temperature, 
no simple relationship between crystallinity and thermal conductivity 
exists at lower temperatures, so the procedure of Hansen and Ho lacks 
even operational significance except in a limited range of temperature. 
The application of the Maxwell formula, which assumes that the inclusions 
are small and widely separated, t o  a polymer with a high degree of crys- 
tallinity seems highly doubtful even if the underlying picture-that of a 
semicrystalline polymer constituted of crystalline and amorphous re- 
gions-is a correct one [66]. Further, applications of the formula devel- 
oped by Eierman predict that at low temperatures the thermal conduc- 
tivity should be dominated by the amorphous behavior, since, as shown 
by Fig. 7, amorphous polymers have a higher thermal conductivity than 
do semicrystalline polymers at low temperatures, while in fact this does 
not seem to be true. Thus, Eierman’s method seems equally dubious as 
a general procedure. 

A different approach to the analysis of the low-temperature thermal 
conductivity of semicrystalline polymers has been made in which one 
attempts to fit the thermal conductivity to a combination of structure 
scattering and scattering characterized by a temperature-independent 
mean free path [12, 491. While it is possible to obtain rather good fits 
of the data to this model, the validity of the model must remain in 
doubt as the analysis is in no way a unique one. Using this model, 
Tucker and Reese [12] found a good correlation between the temperature- 
independent mean free path and the average spherulite size, but this corre- 
lation has not been found in more recent work [49], so the earlier results 
were probably fortuitous. 

Thermal Conductivity of Amorphous Polymers 

The thermal conductivity of PMMA which is shown in Fig. 7 is typical 
of the temperature dependence of the thermal conductivity of amorphous 
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polymers. As the majority of data are available for the case of PMMA, we 
restrict our attention to this single example. The temperature dependence 
is quite different from that in the case of semicrystalline polymers in that 
the thermal conductivity does not exhibit a peak and there is a significant 
plateau region from about 4 to 15°K. In the region below about 2°K the 
temperature dependence appears to approach the linear dependence pre- 
dicted by the structure scattering theories. However, measurements below 
1" show that the temperature dependence becomes faster than linear below 
about 0.7"K 1161. 

Equation (15) can be fit to the available data for PMMA and gives a 
rather satisfactory fit at all temperatures, as shown by Fig. 10. This analy- 
sis is slightly different than that given previously [60] in that a slightly dif- 
ferenct estimate of the heat capacity (namely, that given under Heat Capac- 
ity of Amorphous Polymers) was used. This estimate of the heat capacity 
yields a slightly better fit to the thermal conductivity than was obtained 
before, primarily because the effects of the low-temperature heat capacity 
excess have been included and a better account of the one-dimensional 
modes has been made as a result. In this fit we have used the following 
set of parameters: 

A = 2.224 X lo9 cm-I, To = 7.0, AT = 7.1 8, S1 A l =  2.18 X lo-' cm2/sec. a 

The fit differs but slightly from that obtained previously. If we estimate a 
from the density as 7.5 8, we find that AT is approximately 1 and AL is 
approximately 168. If we estimate s1 from the one-dimensional Tarasov 
parameters given under Heat Capacity of Amorphous Polymers, we find 

s = - ( S  t 2s, T) = 3.9 x lo5 cm/sec 
1 3 1L 

so that Al = 5.6 A, somewhere between two and three times the distance 
between repeating units. 

As shown in Fig. 10, the one-dimensional modes contribute the most 
to the thermal conductivity above nitrogen temperature but very little in 
the helium temperature range. Thus we would expect that orientation of 
the polymer chains, and hence A], would cause an increase in the thermal 
conductivity according to 
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where E is the stretching ratio. This discussion is equivalent at t h s  point to 
that given by Henning [ 5 8 ]  and so it is not pursued further here. However, 
we see that the observations of sizable orientation effects at nitrogen tem- 
peratures and above and negligible orientation effects in the helium tempera- 
ture range support the model. Since the data shown in Fig. 10a were taken 
on an extruded sample, while Al was chosen to fit the higher temperature 
data which were not taken on extruded samples, the fact that the data 
rise even faster than the calculation above 20°K may be further supported 
for this model, as a slightly larger value of a than 1/3 ought to be used for 
the one-clmensional contribution for the extruded sample. 

We may also compare the value of A/a obtained above with that obtained 
using either Eq. (12 or Eq. (13). As the numerical factors do not differ too 
much, which model is used is not too important. Although this comparison 
has not previously been made, it is possible in principle and is illustrated 
by the following. There are existing data on light scattering by dielectric 
constant fluctuations in a Lucite sample [67], which were fit to the exponen- 
tial correlation function, so that Eq. (13) is the appropriate expression to 
use. The dielectric constant fluctuations responsible for the light scattering 
can be related to density fluctuations through the Clausius-Mossotti equa- 
tion, and the density fluctuations can be related to the sound-velocity fluc- 
tuations by the empirical Rama Rao [68] expression 

ds -=D- dp 
S P 

where p is the density and D is an empirical constnat which is approximately 
6 for PMMA. Calculating A/a from the Debye-Bueche light-scattering data 
we find a value of 1OL0cm-'. As the light-scattering data refer to a different 
sample than do the thermal conductivity data, we do not know whether to 
be pleased or worried by the fact that this value is within a factor of about 
4 of that needed to fit the thermal conductivity (for other PMMA samples, 
values of A/a as high as 3.7 X 10gcm-'have been obtained). It would 
certainly be interesting to perform both light-scattering and thermal con- 
ductivity experiments on the same sample. 

More troubling at the present stage of our understanding than the lack 
of numerical agreement between the calculation attempted above and the 
thermal conductivity measurements is the fact that below 1°K the tempera- 
ture dependence becomes more rapid than linear. This difficulty could be 
ascribed to the presence of an additional scattering mechanism, perhaps 
internal boundaries, as in the case of silica glasses [69], although the size 
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of the internal boundaries required, about lO-’cm, makes this analysis 
somewhat questionable. Also, the more rapid than linear temperature de- 
pendence could signal a symmetry of elastic correlations other than spheri- 
cal. An additional possibility is suggested by the fact that there may be a 
weak effect of the molecular weight on the helium temperature conductiv- 
ity and the fact that the most populated thermal wavelengths at tempera- 
tures near 1°K are of the order of random coil dimensions of the polymer 
molecules. This suggestion is that upon lowering the temperature, the 
phonon wavelength increases sufficiently to a sample a different class of 
elastic correlations than those sampled at high temperatures. 

In summary, although it appears that our understanding of the thermal 
conductivity of amorphous polymers is better than our understanding of 
semicrystalline polymers, there are still many unanswered questions which 
should be considered. 
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Discussion of Paper by W. Reese 

Thermal Properties of Polymers at Low Temperatures 
J. A. Sauer: 

W. Reese: 

A. M. Hermann: 

W. Reese: 

M. Shen: 

W. Reese: 

I295 

For the PE sample which showed excess specific heat 
at low temperatures, how many methyl groups were 
Present in the sample? 

About one per 100 CH2. 

Do you know of any thermal conductivity studies on 
polymers that are good electronic conductors such as 
TCNQ polymeric salts? I have specific reference to 
the fact that in metals, the thermal conductivity is 
predominated by electronic contributions at  low 
temperatures. 

There have been, to my knowledge, no measurements. 
This is, of course, an interesting problem and just 
serves to point out the primitive state of our knowledge. 

Did you have the occasion to measure heat capacity of 
polymer single crystals at very low temperatures? 

No, since there are severe problems with the availability 
of samples of sufficient size. The technique for the 
small crystals available, either exchange gas or DTA, 
both seem to have defects as applied to very-low- 
temperature measurements. Above 90°K Wunderljch 
has made measurements, using DTA, on single crystals 
and obtained results in agreement with the extrapola- 
tions. 
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